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The behaviour of the Poisson’s ratio is investigated on the basis
of derived by the authors explicit equations determining the
components of the compliance tensor in an arbitrarily rotated
coordinate frame. Clear analytical expressions describing the
angular dependencies of the auxetic properties have been found
and the crystallographic regions possessing such auxetic

behaviour have been revealed for single crystals of elemental
metals. This was completed with the straightforward expres-
sions for calculation of the maximum values of auxeticity. The
connection between the auxetic properties and the level of
anisotropy of single crystals as well as the Cauchy relation has
been analysed for various metals with BCC and FCC lattices.
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1 Introduction Materials having an intriguing prop-
erty of negative Poisson’s ratio are called auxetics [1], from
Greek – the one which tends to increase. If such
material is stretched along a certain direction, it expands,
rather than compresses along some axis in the plain
perpendicular to the tension. In addition to auxetic materials
occurring in nature (e.g. minerals [2, 3] or metals discussed
below), a real explosion of new types and examples has
come from material engineering. This is led by the pursuit of
creating more materials with superior mechanical properties,
such as higher resilience [4], increased shear stiffness and
plane strain fracture toughness [5]. Starting from the first
demonstration of auxetic foams [4], various porous [6, 7],
composite [8, 9] and granulated [10, 11] auxetic materials
have been reported, complemented by auxetic polymers [12]
and semiconductors [13]. Such developments called for a
vital need for understanding of this counter-intuitive
phenomenon. Following the first mechanical model of a
perfect auxetic [14], both pioneering works on numerical
demonstration of auxeticity in isotropic thermodynamically
stable material [15] and a rigorous analytical solution of the
model of static auxetic phase [16] have been reported. These
studies were succeeded by a model of rotating squares
relevant to the auxeticity in inorganic crystalline materi-
als [5] and a model describing the auxeticity mechanism in
nematic liquid crystalline polymers [12]. Special interest
was given to both experimental [17] and theoretical [18]

investigation of auxetic phenomena near phase transitions.
Concluding the overview, in metals auxeticity presents a
particular interest due to numerous practical applications.
For the most recent developments in the auxetics research
we refer the readers to a special section in Physica Status
Solidi B, guest-edited by Alderson et al. [19] (see also
references therein), which underlines the ongoing activity
in these areas.

At a first sight, negative values of Poisson’s ratios
is an exotic phenomenon. Nevertheless, the possibility of
such mechanical reaction to the external stimuli is
confirmed in previous research and is in agreement with
known relations of an isotropic elastic theory, connecting
the Poisson’s ratio v with Young’s modulus E, bulk
modulus K and shear modulus G. From these relations it
follows that if the conditions 2G > E, 2G > 3K are
satisfied, the negative values of the Poisson’s ratio are
possible; the range of possible values is given by
�1 � n � 0:5. It has been shown that in the case of the
polycrystalline materials negative Poisson ratio within
the stability region of the original crystal is generally
possible [20], but such materials, as well as crystalline
materials that are auxetic in all the directional combina-
tions, seem to be extremely rare in nature [21–23]. For the
isotropic polycrystalline metals the nonauxetic behaviour
can be easily seen from the positiveness (to the best of
our knowledge of the reported data at normal conditions)
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of their elastic constants C11 and C12:

n ¼ C12

C11 þ C12
> 0: ð1Þ

At the same time, in anisotropic metal single crystals it is
not possible to assume a priori that these conditions are not
satisfied and hence rule out the possibility of negative
Poisson’s ratios. Indeed, the negative Poisson’s ratios have
been observed in several metal single crystals [24–26],
including those with BCC and FCC crystalline lattices [27,
28]. In fact, it has been theoretically shown that 69% of the
cubic elemental metals show auxetic behaviour when
stretched along the ½110� direction [29]. This called for
extensive theoretical research in this area. In the works by
Bra�nka et al. [21, 30, 31] and Jasiukiewicz et al. [20] it have
been proposed interesting approaches of mapping the
auxetic behaviour of the cubic single crystals in the
parametric coordinate frame, where the x and y axes
represent combinations of the elastic constants of the
materials. The areas of complete auxetics (materials that are
auxetic for all the directional combinations), partial auxetics
(materials that are auxetic for some stretch–strain directional
combinations) and nonauxetics (not showing auxetic
properties for any directional combination) have been
demonstrated. Also, in the works of Bra�nka et al. [21, 30,
31] and Norris [32], the crystallographic directions for which
the maximal auxeticity is achieved have been shown.

The studies reported above give the answer to the general
question of the existence of auxeticity in a cubic single
crystal. Furthermore, a general criterion of auxeticity was
stated, expressed directly through the material’s elastic
constants, which gives the necessary and sufficient condition
for the existence of auxetic behaviour for at least one
crystallographic direction [23, 29, 33, 34] (complete or
partial). However, they do not say anything about the range of
directions for which the auxetic properties exist. At the same
time, the range of such directions along with the range of the
directions perpendicular to them for which the auxetic
behaviour can be observed are of extreme interest. In several
works addressing the auxetic directions, only a single
crystallographic direction ½110� [3, 28, 29, 35], or directions
lying in a single crystallographic plane ð110Þ [3, 36] were
considered, without a comparative analysis of auxetic
characteristics for other directions. All the directions of the
applied stretch were considered in Refs. [3, 37], however the
strain direction along the axis perpendicular to themwas fixed
to one particular angle [3], the auxetic behaviour studied in
Ref. [37] was averaged over all perpendicular directions.
Alternatively, an accurate numerical parametric 3D mapping
of the angular space (two defining angles for the stretch
direction and one defining the transverse strain direction) was
presented in Ref. [22], but whilst giving an interesting overall
picture, this findings might be difficult to interpret – an
analytical theory on this subject would be of a great interest.

In this paper, we discuss the auxetic properties for all
possible crystallographic directions in single crystals with

cubic symmetry. In clear and explicit analytical expressions
we reveal the domain of crystallographic directions
possessing auxeticity as well as necessary and sufficient
conditions of their existence. Furthermore, for each auxetic
direction, we also determine the range of strain directions
perpendicular to it for which the auxeticity can be observed.
These explicit analytical results help to develop a clear
picture of the angular dependencies describing the auxetic
properties, and in a very straightforward way expose the role
of the elastic constants. Finally, the correlations of auxeticity
with the type of the cubic crystalline lattice and its level of
anisotropy have been analysed, which was followed by the
discussion of its link to the level of fulfilment of the
Cauchy’s relation.

2 Theoretical approach Our approach is based on
the conversion of the compliance tensor in the main
crystallographic axes xyz into a new one in coordinate
system x0y0z0, rotated in respect to the former:

S0ijkl ¼ aipajqakralsSpqrs; ð2Þ

where S0ijkl are the components of the tensor in the new
coordinate system x0y0z0, Spqrs are the components in the old
system xyz and aip, ajq, akr, als are the cosines of the angles
between the corresponding coordinate axis of the new and
the old coordinate systems (e.g. [27]). This transformation
allows to find the tensor components S0ijkl, required to
determine the Poisson’s ratio for an arbitrary crystallograph-
ic direction:

S03333 ¼ S033 ¼ S11 � 2 S11 � S12 � S44ð Þ
� a2

31a
2
32 þ a2

31a
2
33 þ a2

32a
2
33

� �
;

S03322 ¼ S032 ¼ S12 þ S11 � S12ð Þ
� a2

31a
2
21 þ a2

31a
2
22 þ a2

33a
2
23

� �

þS44 a31a21a32a22 þ a31a21a33a23 þ a32a22a33a23ð Þ:
ð3Þ

In the forthcoming analysis the investigated crystal-
lographic direction is conventionally defined by the
Euler angles, connected with aij in a straightforward way.
The notations for the Euler angles are adopted as: a
(rotation around z), b (rotation around y0) and g (rotation
around z0) (see inset of Fig. 1). In this format, a and b
are the azimuthal and polar angles, respectively, defining
the direction of the z0-axis in the original coordinate
system, while g signifies the direction of the Poisson’s
ratio determination in the plane perpendicular to the
chosen z0. The latter angle is defined with respect to line
of nodes N.

In the general case, the Poisson’s ratio for the arbitrary
chosen crystallographic direction z0 can be expressed as

n a;b; gð Þ ¼ � S03j a; b; gð Þ
S033 a;bð Þ ; ð4Þ
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where S03j a;b; gð Þ and S033 a; bð Þ are the components of the
compliance tensor for this direction. It should be noted that
the rotation around z0 by the angle of g¼ 908 results in
change in the index of S03j:

S03j a; b; 08ð Þ ¼ S032 a;bð Þ;
S03j a; b; 908ð Þ ¼ S031 a;bð Þ: ð5Þ

In the framework of the coordinate system transforma-
tion described above, in a cubic single crystal the explicit
expression for these components were derived as

S033 a;bð Þ¼ S11 � 2S sin2 að Þcos2 að Þsin4 bð Þ�

þsin2 bð Þcos2 bð Þ�; ð6Þ

S03j a;b; gð Þ¼ S12 þ 2S sin2 að Þcos2 að Þsin2 bð Þcos2 gð Þ�

þ 1
8
sin 4að Þsin bð Þsin 2bð Þsin gð Þcos gð Þ

þ 1� sin2 að Þcos2 að Þ� �
sin2 bð Þcos2 bð Þsin2 gð Þ�;

ð7Þ

where S11, S12, S44 are the components of the compliance
tensor in the main crystallographic axis of the single
crystal xyz, coinciding with unit cell edges, and
S ¼ S11 � S12 � S44=2.

3 Discussion Since for conventional materials the
value of S033 a;bð Þ is always positive (S033 a;bð Þ ¼ 1=E),
the sign of the Poisson ratio is defined by the sign of the
numerator in Eq. (4). Expressing this statement explicitly,
the Poisson ratio will be negative if

S03j a;b; gð Þ > 0; ð8Þ

which is a necessary and sufficient condition for the existence
of auxetic behaviour for single crystals of any symmetry.

The analysis of v(a, b, g) based on Eqs. (4) and (7) allows
to make some conclusions about the auxetic properties of
overwhelming majority of cubic single crystals (with
S033 a;bð Þ > 0, as explained above and S12 < 0 [23],
otherwise see Refs. [21] and [32]). Firstly, if the auxetic
properties exist (see the condition below, automatically
setting S> 0), the highest negative value of the Poisson ratio
is achieved for ½110� crystal direction (and the directions
analogous to it) at g¼ 08, the latter corresponding to
determination of the Poisson ration in ½1�10� direction. This
can be obtained by numerical minimisation of v(a, b, g) in
respect to all angle variables, which is equivalent in the
considered case to the maximisation of the expression in
square brackets in Eq. (7). The latter can be done by standard
methods of mathematical analysis or by a straightforward
numerical approach. For the above maximal Poisson ratio it
was adopted a notation of nð110; 1�10Þ [29]. In notations of
this form, which will be used henceforward, the first group of
Miller indexes represents the direction of the uniaxial tension,
while the second represent the direction of the Poisson’s ratio
determination. Thus, nð110; 001Þ corresponds to the stretch-
ing in the same ½110� direction, and observation along [001]
(g¼ 908). These (nð110; 1�10Þ and nð110; 001Þ) are the
extreme values, while the Poisson ratio experience a smooth
monotonic evolution in the region between them with a
change of g (Fig. 1). It can be stressed that the values of
nð110; 001Þ are anomalously high in the presence of the
auxetic effect. Furthermore, the higher they are, the more
negative values of nð110; 1�10Þ are achieved. The extreme
values of Poisson’s ratios are determined by the relations

nð110; 1�10Þ ¼ � 2S12 þ S

2S11 � S
; ð9Þ

nð110; 001Þ ¼ � 2S12
2S11 � S

: ð10Þ

Secondly, for the crystallographic directions gradually
deviating from [110] either along a (keeping b¼ 908) or b
(keeping a¼ 458), the highest negative values of the Poisson
ratio will remain to be at g¼ 08 (i.e. along y0), but their values
will decrease, finally disappearing, which can be seen from a
straightforward simplification of Eq. (7) for these cases. More
importantly, the boundaries of the regions, comprising the
crystallographic directions possessing auxetic properties, are
defined by the condition of the numerator of Eq. (4) being zero:

S03j a;b; gmaxð Þ ¼ 0; ð11Þ

where g¼ gmax maximises this function with respect to g:

@S03j a; b; gð Þ
@g

����
g¼gmax

¼ 0;
@2S03j a; b; gð Þ

@g2

����
g¼gmax

< 0:

ð12Þ

Figure 1 Dependencies of n 458; 908; gð Þ for various metal single
crystals: 1 – Pb, 2 –Cu, 3 –Ni, 4 – a-Fe, 5 –Ge. The inset shows the
definitions for the Euler angles.
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These conditions can be rewritten explicitly as

tan 2gmaxð Þ¼ 1
8
sin 4að Þsin bð Þsin 2bð Þ

� sin2 að Þcos2 að Þsin2 bð Þ�

� 1� sin2 að Þcos2 að Þ� �
sin2 bð Þcos2 bð Þ�;

1
8
sin 4að Þsin bð Þsin 2bð Þsin 2gmaxð Þ

þ sin2 að Þcos2 að Þsin2 bð Þ�

� 1� sin2 að Þcos2 að Þ� �
sin2 bð Þcos2 bð Þcos 2gmaxð Þ� > 0:

ð13Þ

The second condition here defines the root of the first
equation, which needs to be selected. The regions of
auxeticity can be found semi-analytically from the above
equations or directly via numerical maximisation of
S03j a;b; gð Þ over g and calculating the sign of this parameter
at found gmax. Such regions are presented in Fig. 2 in the
form of the first quarter of a stereographic projection plotted
for single crystals of Pb, Cu, Ni and a-Fe. In the coloured
areas all the directions, defined by the azimuthal angle a
and polar angle b possess the auxetic behaviour (for a
certain range of g, see below). All the directions which are
beyond these regions have positive Poisson ratios at any g,
correspondingly. Small black circles in the projection
mark the special direction cases with the given Miller
indexes. Here, it needs to be noted, that although in the
stereographic projections of the regions with auxetic
behaviour around ½110�, ½011� and ½010� directions have
different configurations due to inequivalence of a and b in
Euler angle definitions, they have the same configuration
is spatial representation (projected on a sphere of spatial
angles) due to the equivalence of the above crystallo-
graphic directions.

Thirdly, if present for given (a, b), the negative Poisson
ratios exist only for the certain values of g in the interval from
�g1 to g2, the values of which correspond to the roots of

S03j a;b; gð Þ ¼ 0: ð14Þ

The region of auxeticity observation over g in a form of a
continuous interval is stipulated by the fact that S03j a;b; gð Þ
can be represented as a periodic function given by first
harmonics of 2g, which leads to the above conclusion about
the regions of its negative values (if present). Furthermore,
the periodicity over 2g represents physically clear symmetric
response in respect to the stretching axis. Applied to the
½110� direction, the above condition takes the explicit form

cos2 g ½110�
� �

¼ � 2S12
S

: ð15Þ

For all gj j < g ½110� the auxetic effect is observed (v< 0,
Fig. 1).

Concluding the analysis, it is possible to formulate the
conditions for existence of auxetic behaviour in metal
single crystals with cubic lattice symmetry. The condition
S03j a;b; gð Þ > 0 derived above is both necessary and
sufficient for observation of negative Poisson’s ratio for a
given (a, b, g) combination, but is too general and rather
difficult to be used in estimations. However, it can be
represented in a more specific and convenient form,
separating the necessary and sufficient parts. As it follows
from Eqs. (8) and (7) the necessary condition for the
existence of directions with the auxetic behaviour is given
by the inequality [23, 29, 33, 34]

S11 þ S12 � S44=2 > 0; ð16Þ

obtained from the global maximisation of expression in the
square bracket in Eq. (7) over all the angles, returning the
value of 1/4, which after the substitution in Eq. (8) gives
S12 þ 2 S11 � S12 � S44=2ð Þ � 1=4 > 0. The fulfilment of this
condition means the existence of directions with negative
Poisson ratios in the single crystal, but does not specify
them. On the other side, the sufficient conditions were found
above as

S03j a;b; gmaxð Þ > 0; ð17Þ

�g1 < g < g2: ð18Þ

The first inequality determines the region of crystallo-
graphic directions with auxetic behaviour, given by a and b
while the second condition defines the interval of directions
in the plane perpendicular to the chosen crystallographic
direction, in which the auxetic properties reveal themselves.

Figure 2 Stereographic projection of the regions with auxetic
behaviour for single crystals of: 1 – Pb, 2 –Cu, 3 –Ni, 4 – a-Fe. The
black line corresponding to lead encloses slightly larger area than
the magenta line corresponding to copper.
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To examine the possibility of auxetic behaviour in
various BCC and FCC metals, the Poisson ratios were
analysed for all the crystallographic directions for more
than 30 single crystals, most of which were found to
possess the auxetic behaviour. The results are summarised
in Table 1. In the 3rd column the type of the crystallo-
graphic lattice is stated. Column 4 presents the maximal
negative value of the Poisson’s ratio, corresponding
to [001] crystallographic direction (calculated using
Eq. (9)), while column 5 gives angles g ½110� defining the
region where the negative Poisson’s ratio is observed
in the plane perpendicular to this direction (calculated
using Eq. (15)). The 6th column presents the maximal
positive value of the Poisson’s ratio for the investigated
metals (calculated using Eq. (10)). In addition to the
characteristics described above, the following parameters
were introduced. The 7th column returns the values of
the two-dimensional Poisson ratio, defined in terms of
a change of the area of the perpendicular cross-section
of a rod with ½110� major axis under tension in this
direction:

ns ¼ � Ds=s

2Dl=l
¼ � S03j a;b; 08ð Þ þ S03j a;b; 908ð Þ

2S033

¼ nð110; 1�10Þ þ nð110; 001Þ
2

:

ð19Þ

The 8th column gives the numerical values for the level
of anisotropy of the considered single crystals, related to the
maximal value of Young’s modulus:

AE ¼ Emax � Emin

Emax
¼ E½111� � E½001�

E½111�
¼ 2S

3S11
: ð20Þ

This parameter returns AE¼ 0 when applied to isotropic
materials, while e.g. for a single crystal of tungsten, which is
nearly isotropic, AE¼ 2� 10�4. For the cubic single crystals
both positive (E½111� > E½001�) and negative (E½111� < E½001�)
values of AE are possible. In the 9th column the ratios
C12=C44 are given, reflecting how closely the material
satisfies the Cauchy relation, which for cubic single crystals
with central interatomic forces states C12=C44 ¼ 1. The
deviation of C12=C44 from unity is usually considered to
be the evidence for non-central character of forces between
the atoms, which can be a good approximation for crystalline
media, though one have to note that strictly it is valid only in
the limit of zero temperature and pressure (for counter-
example see e.g. Ref. [40]).

The analysis of the calculation results listed in Table 1
allows to draw several conclusions about the auxetic
properties of the considered metals:

– the auxetic behaviour is found in the metals with positive
values of the anisotropy levels, for which E½111� > E½001�;

Table 1 Comparative analysis of the auxetic properties of cubic metal single crystals. The elastic constants along main crystallographic
axes were taken from [38, 39].

metal group
number

lattice
type

nð110; 1�10Þ g ½110�ðdeg:Þ nð110; 001Þ ns AE C12=C44

alkali metals
Li 1a BCC �0.555 33 1.31 0.38 0.87 1.16
Na 1a BCC �0.525 34 1.16 0.32 0.84 0.79
K 1a BCC �0.412 31 1.16 0.37 0.81 1.42
Rb 1a BCC �0.399 30.5 1.15 0.38 0.81 1.49
Cs 1a BCC �0.362 33.5 0.83 0.24 0.72 0.66

transition metals
Cu 1b FCC �0.136 22 0.819 0.34 0.65 1.64
Ag 1b FCC �0.095 18.5 0.821 0.36 0.64 2.03
Au 1b FCC �0.037 12 0.876 0.42 0.64 3.73
a-Fe 8a BCC �0.049 15.5 0.623 0.30 0.53 1.38
Co 8a FCC �0.149 24 0.762 0.31 0.64 1.24
Ni 8a FCC �0.068 18 0.638 0.29 0.55 1.17
Pd 8a FCC �0.100 18.5 0.877 0.39 0.66 2.48

alkali earth metals
Ca 2a FCC �0.275 29 0.863 0.30 0.71 1.02
Sr 2a FCC �0.264 29 0.851 0.29 0.70 1.04

lanthanide metals
Ce 3a FCC �0.154 26.5 0.626 0.24 0.58 0.82
Yb 3a FCC �0.330 34 0.715 0.19 0.71 0.56

actinide metals
Th 3a FCC �0.223 28 0.764 0.27 0.67 1.02

post-transition metals
Pb 4b FCC �0.184 23 0.996 0.41 0.72 2.72
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– the auxetic properties do not demonstrate a deterministic
relation to the type of the crystal lattice, both BCC and
FCC single crystals can possess them;

– all the considered metal single crystals from the first (1a
and 1b) and 8a groups of the periodic table demonstrate
the auxetic behaviour. In other groups this happens for
the metal single crystals positioned at the lower part of the
periodic table;

– the two-dimensional Poisson ratio vs for auxetics is always
positive, which corresponds to the decrease of the area of
perpendicular cross-section under applied tension;

– the highest negative values of the Poisson ratio, defined by
nð110; 1�10Þ, raise with the increase of the single crystal
anisotropy level AE. In the first approximation with a
correlation coefficient r¼ 0.94, this relation can be
considered as linear (Fig. 3);

– on the other hand, in the considered metal single crystals
no correlation is observed between nð110; 1�10Þ and the
level of fulfilment of the Cauchy relation, which calls for
more cautious application of models considering only
central forces (e.g. [29]) for explanation of auxeticity in a
general case.

4 Conclusions In conclusion, for cubic crystalline
lattices using realistic assumptions and a rigorous theoretical
approach, explicit analytical expressions describing the
behaviour of the Poisson’s ratio for an arbitrary combination
of spatial angles were derived. This allowed to reveal the
areas of the spatial directions possessing negative Poisson’s
ratio and furthermore for any given direction in these
areas, to find the directions in a plane perpendicular to it
exposing such auxetic properties. Finally, the analysis of

auxeticity in various metal single crystals was performed,
their key auxetic characteristics were determined and a link
between them and the level of the elastic anisotropy was
demonstrated.
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